Tagged-particle motion in glassy systems under shear: Comparison of mode coupling theory and Brownian dynamics simulations.
نویسندگان
چکیده
We study the dynamics of a tagged particle in a glassy system under shear. The recently developed integration through transients approach, based on mode coupling theory, is continued to arrive at the equations for the tagged-particle correlators and the mean squared displacements. The equations are solved numerically for a two-dimensional system, including a nonlinear stability analysis of the glass solution, the so called β-analysis. We perform Brownian Dynamics simulations in 2D and compare with theory. After switch on, transient glassy correlation functions show strong fingerprints of the stress overshoot scenario, including, additionally to previously studied superexponential decay, a shoulder-like slowing down after the overshoot. We also find a new type of Taylor dispersion in glassy states which has intriguing similarity to the known low-density case. The theory qualitatively captures most features of the simulations with quantitative deviations concerning the shear-induced time scales. We attribute these deviations to an underestimation of the overshoot scenario in the theory.
منابع مشابه
Relaxation in a glassy binary mixture: comparison of the mode-coupling theory to a Brownian dynamics simulation.
We solved the mode-coupling equations for the Kob-Andersen binary mixture using structure factors calculated from Brownian dynamics simulations of the same system. We found, as was previously observed, that the mode-coupling temperature T(c) inferred from simulations is about two times greater than that predicted by the theory. However, we find that many time-dependent quantities agree reasonab...
متن کاملTransient dynamics in dense colloidal suspensions under shear: shear rate dependence.
A combination of confocal microscopy and rheology experiments, Brownian dynamics (BD) and molecular dynamics (MD) simulations and mode coupling theory (MCT) have been applied in order to investigate the effect of shear rate on the transient dynamics and stress-strain relations in supercooled and glassy systems under shear. Immediately after shear is switched on, the microscopic dynamics display...
متن کاملStructural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation.
We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are...
متن کاملNonlinear Rheological Properties of Dense Colloidal Dispersions Close to a Glass Transition under Steady Shear
The nonlinear rheological properties of dense colloidal suspensions under steady shear are discussed within a first principles approach. It starts from the Smoluchowski equation of interacting Brownian particles in a given shear flow, derives generalized Green-Kubo relations, which contain the transients dynamics formally exactly, and closes the equations using mode coupling approximations. She...
متن کاملHard discs under steady shear: comparison of Brownian dynamics simulations and mode coupling theory.
Brownian dynamics simulations of bidisperse hard discs moving in two dimensions in a given steady and homogeneous shear flow are presented close to and above the glass transition density. The stationary structure functions and stresses of shear-melted glass are compared quantitatively to parameter-free numerical calculations of monodisperse hard discs using mode coupling theory within the integ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The European physical journal. E, Soft matter
دوره 34 9 شماره
صفحات -
تاریخ انتشار 2011